Assignment #5:

1. Exercise 15.2-1

 Solution:

 Parenthesization:

 $$(((A_1)(A_2))(((A_3)(A_4))((A_5)(A_6))))$$

2. As numbers are selected, the set that remains at any time looks of the form $A[i, i+1, ..., j]$ for some pair $i \leq j$. If $j - i$ is even, it player I’s turn and otherwise it is player II’s turn. So these form the subproblems. Their number is $O(n^2)$. We ill need the answers to problems with smaller values for $j - i$ when solving similar problems with larger values of $j - i$. So this determines the order in which we solve these subproblems. The recursion equation that relates these is given by

 $$m[i,j] = \max\{A[i] - m[i+1,j]; A[j] - m[i,j-1]\} \quad \text{for } i < j$$

 $$m[i,i] = A[i]$$
where \(m[i,j] \) = the maximum value for the player whose turn it is. Complexity is \(O(n^2) \). If we keep track of which term produces the maximum we also can recover the strategy. The "minus" sign in the above equation is since players alternate in taking turns.

3. Consider the activity selection problem discussed before but with profits. Activity \(i (= 1, 2, ..., n) \) has three values associated with it. \(s_i \) the start time, \(f_i \) the finish time and \(p_i \) the profit. We want to select a subset of nonoverlapping activities whose total profit is maximum. Show how to use dynamic programming to solve this problem. (Hint: Read 16.1 in your book)

Solution:

Let \(T[i] = \{ j : s_j \geq s_i \} = \{ i, i + 1, ..., n \} \) after sorting in increasing order of \(s_i \). Let \(P[i] \) be the maximum profit from activities in \(T[i] \). Let \(k[i] = \min[j : s_j \geq f_i] \). Compute these as follows:

(a) Sort the \(s_i \) values: Renumber the activities according to this sorted order. Complexity: \(\Theta(n \lg n) \).

(b) To find \(k[i] \) for all \(i \): Do binary search to find the right spot for \(f_i \) among the sorted list of \(s_j \). Complexity: \(\Theta(\lg n) \) per index \(i \). Overall \(\Theta(n \lg n) \).

(c) Derive a recursion equation connecting \(P[i] \) to \(P[j] \); \(j \geq i + 1 \). There are two choices at the beginning of problem \(P[i] \): include activity \(i \) or not.

\[
\begin{align*}
P[i] &= \max\{ [p_i + P[k[i]]], P[i + 1] \}; i < n \\
P[n] &= p_n
\end{align*}
\]

These values are calculated in decreasing order of values of \(i \). Complexity: To compute \(P[i] \) for all \(i \): \(\Theta(n) \) – one addition and one comparison per value. Overall complexity: \(\Theta(n \lg n) \).

4. Given a string \(A[1,2,...,n] \) of numbers, find the subsequence \(B[1,2,...,m] \) with \(B[i] < B[i + 1] \) for \(i = 1,2,...,m - 1 \) such that the value of \(m \) is maximum.

Solution:

Since you were prohibited from sorting and using the two sequences, here is a direct approach using dynamic programming:

Let \(l[j] \) = the length of a longest increasing subsequence which ends in the element \(A[j] \). Then we have:

\[
\begin{align*}
l[1] &= 1 \\
l[j] &= \{ 1 + \max_{i<j; A[i]<A[j]} [l[i]] \} \quad j \geq 2
\end{align*}
\]
We keep track of the value of i that produces the maximum for each j to recover the solution. All this is done by the following pseudocode:

LIS(A)

1. $n \leftarrow \text{length}[A]$
2. for $j \leftarrow 1$ to n
3. do $l[j] \leftarrow 1$
4. $\pi[j] \leftarrow \text{NIL}$
5. for $i \leftarrow 1$ to $j - 1$
7. then $l[j] \leftarrow 1 + l[i]$
8. $\pi[j] \leftarrow i$
9. return l and π

A simple implementation of this gives a $\Theta(n^2)$ algorithm. We can make it work in $\Theta(n \lg n)$ time by a better implementation as follows. For a fixed j and for a given value $v < A[j]$, it suffices to record the index $i < j$ for which $A[i] = v$ and $l[i]$ is the largest. Thus, if we have two indices i and k satisfying the relations $i < j; k < j; A[i] = A[k] < A[j]; l[k] \leq l[i]$ we need not consider the index k for computing $l[j]$. Let the set of triples over $A[1, 2, ..., j - 1]$ be $(v_1, i_1, l_1), (v_2, i_2, l_2), ..., (v_p, i_p, l_p)$ where the triples are of the form (value, index, length).

- For the triple (v_k, i_k, l_k)

 $v_k = A[i_k]$

 $l_k = l[i_k]$

- $v_1 < v_2 < v_3 < ... < v_p$
- $v_m < v_r; l_m \geq l_r \implies$ we can discard the triple (v_r, i_r, l_r) from consideration for computing $l[j]$.
- Thus, after the above elimination, we have triples satisfying both the following relations: $v_1 < v_2 < v_3 < ... < v_p$ and $l_1 < l_2 < l_3 < ... < l_p$
- To evaluate

$$\max_{i < j; A[i] < A[j]} [l_i]$$

over these type of indices, we can do a binary search taking $O(\lg n)$ steps since there are at most n indices to consider.
- Now this may eliminate some of our triplets for future consideration.
- This makes the algorithm take $\Theta(n \lg n)$ time overall.
There is another algorithm which also takes the same time but is based on the greedy approach to solve another problem that is related to this one.

5. Problem 15-6 (page 408)
Solution:
\(t(x) = \) the best total value for subtree rooted at \(x \) (possibly including \(x \)).
\(u(x) = \) the best total value for subtree rooted at \(x \) (excluding \(x \)). Then
\[
\begin{align*}
 u(x) &= \sum_{i \in \text{children}(x)} t(i) \\
 t(x) &= \max[u(x), r(x) + \sum_{i \in \text{children}(x)} u(i)]
\end{align*}
\]

Compute these values from the leaf nodes up. Boundary conditions:
\[
\begin{align*}
 u(x) &= 0 \text{ for leaf nodes} \\
 t(x) &= \max[0, r(x)] \text{ for leaf nodes}
\end{align*}
\]
Complexity: \(\Theta(n) \) since each node is visited twice and each edge twice.

6. 16.2-2: 0/1 Knapsack Problem:
Solution:
Solution:
Given \(n \) items; \(i^{th} \) item has an integral weight \(w_i \) and a value \(v_i \). The capacity of the knapsack is \(W \). We want to solve the problem:
\[
\sum_{i=1}^{n} w_i x_i \leq W \\
\max \sum_{i=1}^{n} v_i x_i \\
x_i \in \{0, 1\}; \quad i = 1, 2, ..., n
\]

Let \(m[j, t]; \{ j = 1, 2, ..., n; \ t \leq W; \text{integer} \} \) represent the maximum in the problem
\[
\begin{align*}
 \sum_{i=1}^{j} w_i x_i &\leq t \\
 \max \sum_{i=1}^{j} v_i x_i \\
x_i &\in \{0, 1\}; \quad i = 1, 2, ..., j
\end{align*}
\]
where $t \leq W$ and is an integer. Then

$$m[1, t] = \begin{cases}
0 & t < w_1 \\
v_1 & t \geq w_1
\end{cases}$$

$$m[j, t] = \begin{cases}
m[j - 1, t] & t < w_j \\
\max\{m[j - 1, t], v_j + m[j - 1, t - w_j]\} & t \geq w_j
\end{cases} \quad n \geq j > 1$$

These values are computed in increasing order of values of j. For each set of values of j and t we need one addition and one comparison. Thus the overall complexity is $\Theta(nW)$.